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ABSTRACT

Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem ser-
vices. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large-
scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and land-
scape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 110 studies on
the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of sec-
ond growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought
decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored.
Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vul-
nerability to climate extremes is generally inversely related to long-term exposure, which varies with historical climate and biogeography.
The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms
often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases for-
ests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire,
potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are
required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs
in these landscapes.

Abstract in Spanish is available with online material.

Key words: Drought; fire; hurricanes; regrowth forests; warming.

MORE THAN 70 PERCENT OF ALL REMAINING TROPICAL FORESTS ARE

SECOND GROWTH FORESTS ON FORMER AGRICULTURAL OR LOGGED

LANDS (FAO 2010). These forests, which include both unassisted
natural regeneration and forests actively planted for initiating nat-
ural regeneration, provide a wide range of ecosystem services
(e.g., carbon storage, regulation of water flows, biodiversity con-
servation) on which present and future societies and economies
depend. For instance, recent studies have estimated that carbon is
accumulating in second growth tropical forests at rates as high as
3 Pg C/yr, accounting for more than 40 percent of the global
aboveground carbon sink (Pan et al. 2011, Grace et al. 2014).
Poorter et al. (2016) reported an average annual carbon gain of
3.05 Mg/ha for Neotropical secondary forests.

Despite the potential benefits of large-scale Forest Land-
scape Restoration (FLR) for climate mitigation and adaptation,
climate variability and change may also hinder large-scale FLR
efforts. Climate change is likely to alter successional trajectories

of forest structure and biomass accumulation, and increase the
likelihood of large-scale fires, intense tropical storms, and out-
breaks of forest pests and diseases. Yet, our understanding of cli-
mate change effects on FLR processes in tropical regions and
potential feedbacks to the atmosphere remains limited (Ander-
son-Teixeira et al. 2013). This gap in our knowledge is of para-
mount importance given that tropical nations have committed
more than 45 million ha to FLR by 2030 (http://www.bonnchal
lenge.org) and that climate variability and change may compro-
mise or lessen the benefits of these commitments for climate mit-
igation and adaptation.

Climate change is expected to cause directional changes and
increasing variability in mean annual temperature and precipita-
tion (IPCC 2007, Anderson 2011, Diffenbaugh & Scherer 2011),
with some of the fastest changes occurring in the tropics (Chris-
tensen et al. 2007 5, Anderson 2011, Mora et al.2013). The tropics
are predicted to experience extreme seasonal heat: between 2010
and 2039, up to 70 percent of seasons in the tropics may exceed
late 20th century temperature maxima (Diffenbaugh & Scherer
2011). Precipitation patterns are also expected to shift (Neelin
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et al. 2006, Dai 2013,6 Feng et al. 2013, Mora et al. 2013). Though
models disagree on predictions of drought more so than on trop-
ical temperature extremes (Good et al. 2013), most predict stron-
ger droughts in the Amazon (Joetzjer et al. 2013), Central
America and the Caribbean, making FLR efforts in these regions
particularly vulnerable to climate extremes (Fig. 1; Neelin et al.
2006), West Africa, and peninsular Southeast Asia (Zelawoski
et al. 2011). Changes in the timing, magnitude, and duration of
seasonality of precipitation are also expected to vary geographi-
cally (Feng et al. 2013, Mora et al. 2013, Greve et al. 2014). For
example, western Africa and central Brazil have undergone
marked reductions in rainfall seasonality due to decreases in their
rainfall amounts while Central Africa has experienced a lengthen-
ing of the rainy season (Feng et al. 2013).

Beyond its effects on temperature and precipitation, climate
change is likely to alter disturbance regimes (Dale et al. 2001,

DOE 2012). The frequency and/or intensity of disturbances,
including fires, cyclonic storms, and floods, are anticipated to rise
with climate change. Since cyclonic storms derive their energy
from ocean heat, their intensity is forecasted to increase with a
warming climate (Emanuel 2005, Webster et al. 2005) but predic-
tions differ by ocean basin (Knutson et al. 2010). The most sig-
nificant increase in observed cyclone intensity has occurred in the
North Atlantic. By 2100, maximum sustained wind speeds and
precipitation associated with storm events are predicted to
increase. Fire is strongly linked to climate variability (Swetnam
1993, Kitzberger et al. 2007) with greater fire risk during drought
and ENSO events (Fu et al. 2013). Climate change is predicted
to alter fire regimes, but there is uncertainty and disagreement
across models about the extent and direction of these changes in
the tropics (Pechony & Shindell 2010, Liu et al. 2010 7, Moritz
et al. 2012), hindering our ability to identify regions where FLR
efforts may be compromised (Fig. 1).

Effects of climate on disturbance may be intensified by
shifts in land use throughout the tropics. Disturbance regimes
and their interactions with land use also exhibit regional variabil-
ity and may respond differently to a changing climate. Regional
variation in the extent and spatial patterns of road building, land
use, and landscape fragmentation leads to added variation in
drought-induced fire activity (Nepstad et al. 2001, Cochrane &
Laurance 2008, Uriarte et al. 2012a). For example, distance to
forest edge in fragmented forests has been associated with
increased fire activity in the Amazon (Alencar et al. 2004) but Slik
et al. (2011) 8found limited edge effects in a burned forest in Bor-
neo suggesting that the interactive effects of edges and fire may
differ across regions. Since second growth and forest restoration
plantings are more prevalent in human-modified, fragmented
landscapes (Sloan et al. 2015), this is a key research gap. Hetero-
geneity in predicted spatial and temporal scales of climate change,
including its effects on disturbance regimes and land use, is one
of the challenges that inherent in drawing generalizations about
the impacts of climate change on FLR in the tropics (Cavaleri
et al. 2015).

An additional difficulty in assessing the response of tropical
second growth forests and forest restoration plantings to climate
change is the heterogeneity in their ecological dynamics and envi-
ronmental context. From a biogeographic perspective, tropical
forests can be classified into Neotropical, Afrotropical, and Indo-
Malau-Australasian. Differences in the evolutionary history of
regional species pools, geology, disturbance regimes, and current
and past climates across these broad regions are likely to modu-
late responses to climate variability and change (Malhi et al.
2014). There is evidence that the sensitivity of rain forest trees to
climate varies geographically across the tropics, with those in
more aseasonal climates (e,g., Southeast Asia) showing substan-
tially larger increases in mortality under drought (Kumagai et al.
2008, Phillips et al. 2010) than those of Amazonia, for example,
although data are extremely limited.

At the landscape and local scales, heterogeneity in soil prop-
erties, interactions among species, and disturbance regimes have
shaped the life histories of tropical trees in ways that are likely to

FIGURE 1. Changes in climate and climate variability can affect tree recruit-

ment, growth, and other demographic processes that shape forest succession

directly or by altering the frequency and intensity of climatic disturbance

events, such as drought, fire, and tropical cyclones. The effects of climate and

disturbance events on forest successional trajectories can also be mediated by

regional and landscape factors that affect the species pool available for refor-

estation. For example, geomorphology and human land use can affect species’

exposure to fire and continental differences in rainfall seasonality and biogeo-

graphic histories can influence species’ tolerance to drought.
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influence forest responses to climate (DOE 2012). Forests sub-
jected to frequent, annual tropical storms (e.g., Taiwan), for exam-
ple, are low statured and more resilient and resistant to wind
damage and therefore to increases in storm frequency or inten-
sity, than forests that experience storm damage on decadal scales
(Caribbean, South Pacific and Australian forests). Understanding
the single or interactive effects of climate variability and change
on the structure, composition, and dynamics of naturally regener-
ating second growth forests and, consequently, on large-scale
FLR efforts will require a comprehensive, comparative approach
across different patterns of climate variability and change, biogeo-
graphic regions and landscapes (Fig. 1).

To date, most research on climate impacts on tropical tree
growth and survival has been conducted in old growth forests
(e.g., Feeley et al. 2007, Phillips et al. 2010). For example, several
thorough reviews highlight the potential for increased tempera-
tures to negatively affect carbon storage and biodiversity in tropi-
cal forests (Wright et al. 2009, Corlett 2011, Wood et al. 2012).
None of these reviews, however, examine climatic impacts on
second growth forests and how these may differ from old growth
forests. Understanding how tropical second growth forests
respond to climate change and variability, including disturbance
regimes, is critical for improving predictions of feedbacks
between the terrestrial biosphere and climate. Yet, our current
understanding does not incorporate potential differences in physi-
ological and ecological response of successional forests to climate
and related disturbance events. This knowledge gap is critical
because not only are natural and restored second growth forests
widespread today, they are increasingly becoming dominant
worldwide, particularly in the context of ongoing large-scale FLR
efforts (Chazdon 2014).

Second growth forests and assisted regeneration may be
more vulnerable to climate variability and change than old growth
forests. At the stand scale, early successional forests may be par-
ticularly vulnerable to climate extremes due to rapid stem turn-
over and low basal area, which result in elevated light and
temperature in the understory (Fig. 2A) (Nicotra et al. 1999, Has-
selquist et al. 2010, Lebrija-Trejos et al. 2011). Competition for
soil nutrients and water, which may intensify under drought, may
also be more intense in young second growth forests than in old
growth as a consequence of fast growth rates of growing vegeta-
tion and high stem densities (Fig. 2B). Legacies of previous land
use can lead to depleted soil nutrient supply, so that second
growth forest productivity can be limited by nitrogen (N) whereas
old growth lowland tropical forests can show a surplus of N
(Vitousek & Reiners 1975, Davidson et al. 2004, Batterman et al.
2013).

At the community scale, second growth forests contain a
greater proportion of pioneer and fast growing tree species,
whose physiological characteristics may make them more vulnera-
ble to drought and temperature increases (Bazzaz & Pickett
1980, Phillips et al. 2010, Lohbeck et al. 2013, Ou�edraogo et al.
2013). For example, high rates of hydraulic conductance in early
successional trees have been linked to leaf and wood functional
traits that confer high rates of photosynthesis and transpiration

that can increase risk of xylem cavitation under drought condi-
tions (O’Brien et al. 2004, Santiago et al. 2004, Markesteijn et al.
2011, McCulloh et al. 2011). A recent global analyses on the rela-
tionship between drought mortality found that low-wood density
trees, a trait typically associated with low shade tolerance, were at
greater risk of drought-associated mortality (Phillips et al. 2010).
At the landscape scale, the location of natural and restored sec-
ond growth forests is non-random, as agricultural abandonment
occurs earlier on less accessible, steeper areas with lower soil fer-
tility and greater hydrological stress (Asner et al. 2009). This spa-
tial distribution may magnify the effects of climatic variation on
ecological processes. Many tropical second growth and restored
forests also exist in landscapes heavily modified by human activi-
ties, putting them at risk of drought-induced fires (Gutierrez-
Velez et al. 2014).

In a recent review of climate effects on global forest recov-
ery, Anderson-Teixeira et al. (2013) highlighted large gaps in our

FIGURE 2. 64(A) Hypothesized changes in environmental conditions and abi-

otic resources across four stages of succession which may modify tree and

forest responses to climatic variability and change. Successional stages are

derived from Chazdon (2007) 9. Note that these apply to wet forests and dry

forests during the wet season. Hypothesized changes are based on data from

Lebrija-Trejos et al. 2011, Denslow and Guzman 2000 10. (B) Hypothesized

shifts in tree growth and mortality for early successional (ESS) and late

successional specialists (LSS) across the four successional stages.
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understanding of climate change effects on natural second growth
tropical forests compared to temperate or boreal forest biomes.
Here, we synthesize existing literature on second growth forest
demographic responses to natural climate variability as manifested
by extreme rainfall events and disturbances such as cyclones and
fire. We aim to identify the intrinsic, such as age and composi-
tion, and extrinsic factors, such as landscape and regional context,
that mediate vulnerability of tropical second growth forests to cli-
mate change and to identify gaps and geographic biases in cur-
rent knowledge. We hope that filling these gaps will enhance the
success of FLR in tropical regions. Our review builds on that of
Anderson-Teixeira et al. (2013) by linking species successional
and life history stages to climate drivers and examining the
effects of climate variability, not just climate trajectories, and

climate-driven disturbance events. We include individual species
responses as well as consequences for successional dynamics (i.e.,
effects on forest structure and composition). Finally, given the
large climatic and biogeographic diversity of natural and restored
second growth tropical forests worldwide, we assess how regional
and landscape context mediate impacts of climate variability
(Fig. 1). The latter is of paramount importance for understanding
the present and future persistence (and the role they will play in
biodiversity maintenance, and the supply of ecosystem functions
and services) of second growth forests in human-modified land-
scapes.

Tropical climates vary across multiple temporal scales: sea-
sonal, inter-annual, and multi-annual (e.g., ENSO) (Fig. 3). The
range of historical conditions experienced in any one location

FIGURE 3.63 Multiple scales and aspects of climate variability in a tropical dry forest. (A) Annual precipitation in Santa Rosa, Costa Rica between 1980 and 2015,

(B) Mean and CV of monthly precipitation in Santa Rosa, Costa Rica between 1980 and 2015 (C) Comparison of average and 2014 monthly precipitation data

during the rainy season. Data are from the �Area de Conservaci�on Guanacaste (http://www.acguanacaste.ac.cr/).
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often includes that of near-term forecasts of climate change
(~20–40 years), making extrapolation of future responses feasible.
We include experimental and observational studies of tree demo-
graphic responses at single or multiple stages of forest develop-
ment to climate change, climate variability, or disturbance, and
attempt to identify the most vulnerable life history or successional
stages (Table 1; Fig. 2). Where research on second growth forests
is lacking, we refer to literature on old growth forests and
hypothesize how the response may differ, based on what we
know about successional processes. In the discussion, we focus
on synthesizing results from our literature search to address the
following questions: (1) which life history stages and successional
groups are particularly vulnerable to climate variability and to
related disturbance events and what are the consequences for
succession? (2) How do regional and landscape context mediate
second growth forest responses to climate variability and altered
disturbance regimes?

METHODS

To identify relevant literature, we searched the ISI Web of Science
using the following key words: (climate OR precipitation OR
temperature OR enso OR drought OR fire OR tropical storm$)
AND tropical forest AND (mortality OR recruitment OR species

turnover OR growth OR species loss) AND (succession OR
logged OR regrowth OR recovery OR secondary forest). To
expand our literature search, we also included studies cited in the
papers identified by our ISI search and other studies contributed
by experts on the subject. From these results, we selected papers
that met the following criteria: (1) directly considered at least one
climate factor as a predictor variable; (2) considered some aspect
of forest stand dynamics (growth, mortality, recruitment, fecun-
dity, species composition, forest structure) as a response variable;
and (3) was conducted in a tropical second growth forest. This
ultimately resulted in a total of 110 studies, which we classified
according to location of study, climate factors considered, forest
type (wet or dry), response variables, and tree size classes mea-
sured (Appendix S1).

RESULTS AND DISCUSSION

WHICH LIFE HISTORY STAGES AND SUCCESSIONAL GROUPS ARE

PARTICULARLY VULNERABLE TO CLIMATE VARIABILITY AND TO

RELATED DISTURBANCE EVENTS?.—Mortality was by far the most
common demographic process studied across all climate factors
(Table 2). Growth, recruitment, and re-sprouting were far less
frequently studied, despite being key successional processes. This
discrepancy may be because mortality is easier to measure than

TABLE 1. Hypothesized effects of climate variability and change at multiple temporal

scales on the demography of different tropical forest trees at different life

history stages. Based on these effects, we predict the successional stage likely to

be most affected. Successional stages: stand initiation (I), stem exclusion (II),

understory re-initiation (III), old-growth (IV) derived from Chazdon

(2007). We expect that short-term drought and extreme precipitation events

will primarily influence seedling recruitment and mortality and these effects

will be most marked in the early stages of succession. Effects of annual

droughts will be most marked in the stem-exclusion stage when canopy

transpiration rapidly increases and competition for water peaks (Fig. 1).11

Driver

Temporal

scope

Demographic

Process Succession

Life History

Stage

Drought/

Extreme

Precipitation

Short-term Recruitment,

mortality

I, II Seedlings

Annual

scale

Fecundity,

growth,

mortality

II Adults, saplings,

seedlings

Periodic:

ENSO,

ASST

All processes I – IV All stages

Temperature Daily,

annual,

and

long-term

? ? ?

Fire Frequency Mortality I – IV Sapling, seedlings

Intensity “+ recruitment I – IV All stages

Hurricanes Frequency ‘’ I – IV All stages

Intensity ‘’ III, IV Adults

TABLE 2. Number of studies focused on specific response variables by primary climatic

driver considered. We examine demographic rates as well as vulnerability to

drivers, that is, damage from cyclones and flammability during fires. We also

summarize the number of studies that examined effects of climate drivers on

forest structure and composition. Some studies examined multiple response

variables, so the sum of the column totals is greater than the total number of

studies reviewed (n = 110). For growth, mortality, recruitment, and

resprouting, we show in parentheses the direction of response to climate-

mediated effect relative to undisturbed controls (+, �, 0). The symbol +

indicates that the response variable was higher in ‘treatment’ (effect of climate

extreme or disturbance) forest relative to control, � indicates a decrease in

the response, and 0 indicates no change was detected. The numbers in the

parenthesis only include studies that compared the response to either an

undisturbed or pre-disturbance control. Data were not sufficient to evaluate

directionality of the response for other demographic processes.

Response Drought Fire Cyclone Temperature Total

Growth 6 (0, 3, 3) 2 (1, 0, 0) 15 (0, 5, 0) 0 23

Mortality 8 (5, 0, 2) 21 (17, 0, 0) 23 (8, 0, 0) 0 52

Fecundity 2 1 3 1 8

Germination 1 3 0 0 5

Recruitment 4 (0, 2, 1) 6 (1, 2, 0) 10 (3, 0, 0) 0 20

Resprouting 0 8 (4, 0, 0) 5 (1, 0, 0) 0 13

Damage 0 0 19 0 23

Flammability 0 3 0 0 3

Structure 4 18 19 0 57

Composition 2 12 16 0 40

Total studies 17 37 55 1
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growth or recruitment, especially if measurements occur immedi-
ately after a disturbance event. Forest structure and composition
were also commonly studied. Reproduction received scant atten-
tion with only eight studies on fecundity and five on germination,
primarily in wet forests (Table 3). Most studies focused on large
size classes (adult trees >10 cm dbh), rather than seedlings or
saplings, though small trees may be more vulnerable to some cli-
mate extremes and disturbances and are key to regeneration pro-
cesses (Table 4). Here, we focus on what is known about how
intra- and inter-annual variability in temperature, precipitation,
tropical cyclones, and fire affects successional processes, drawing
from the 112 studies mentioned above and from the richer litera-
ture of climate impacts on old growth tropical forests.

65 Impacts of Temperature and Precipitation Variability.—Temperature.—
Our understanding of temperature effects on second growth for-
est is extremely limited (Table 2). Because the light environment
in the understory of second growth forests can be far different
from that of old growth forests (Nicotra et al. 1999, Hasselquist
et al. 2010, Lebrija-Trejos et al. 2011), temperature changes are
likely to have strong effects, particularly in early successional
stages, through effects on seed germination. For example Aud
and Ferraz (2012) examined the effects of temperature fluctua-
tions on seed germination of seven species and found positive,

negative and non-significant responses. On the other hand, early
successional species in tropical forests may be adapted to cope
with extreme temperatures and/or dissipate increased heat loads
of early successional environments, as has been shown for sea-
sonally dry tropical forest in Mexico (Lebrija-Trejos et al. 2010).
However, effects of high temperatures on regeneration may differ
between wet and dry forests. Resolving whether and which tropi-
cal tree species are uniquely adapted or alarmingly vulnerable to
predicted temperature change should be a priority for the global
change community.

Large-scale warming experiments are currently underway in
one tropical forest in Puerto Rico but to date the only published
studies of physiological and growth responses of tropical tree
species to altered temperature come from diurnal temperature
gradients (Slot et al. 2013), growth chamber experiments (Cun-
ningham & Reed 2003, Cheesman & Winter 2013), cut leaves in
warmed chambers (Doughty & Goulden 2008), or branch warm-
ing experiments (Slot et al. 2014). Relative growth rates of seed-
lings grown at a range of temperatures showed that pioneer
species performed better than late successional species at higher
temperatures (Cheesman & Winter 2013). This trend persisted at
the highest temperature (35°C), at which growth rates for old
growth species were severely depressed. In a field study canopy
whole leaf respiration for early successional species responded
more to elevated temperature than mid- or late-successional spe-
cies (Slot et al. 2013). Both of these studies suggest that the phys-
iological and growth responses of species to elevated temperature
vary by successional status, but the implications of this variation
for successional dynamics are not clear.

Long-term datasets that span a broad range of temperatures
are useful for making inferences about tropical forest processes
under a warming climate. High temperatures reduced growth
rates in old growth forests (Clark et al. 2003, 2010). By using
long-term records of reproduction that spanned a 1–4°C gradient
in temperature, Pau et al. (2013) showed increased flower produc-
tion with increasing temperatures in an ever-wet second growth
forest in Puerto Rico. Changes in flower production and seed
availability that may accompany climate change can alter

TABLE 3. Number of studies focused on each response variables by biome (wet or dry

forest). Total studies do not always add up to totals in table 2 because there

was one study that compared across wet and dry forest. For growth,

mortality, recruitment, and resprouting, we show in parentheses the direction

of response to climate-mediated effect relative to undisturbed controls (+, �,

0). The symbol + indicates that the response variable was higher in

‘treatment’ (effect of climate extreme or disturbance) forest relative to control,

� indicates a decrease in the response, and 0 indicates no change was

detected. The numbers in the parenthesis only include studies which compared

the response to either an undisturbed or pre-disturbance control. Data were

not sufficient to evaluate directionality of the response for other demographic

processes.

Dry Wet

Growth 6 (0, 3, 1) 18 (1, 5, 3)

Mortality 10 (4, 0, 1) 42 (25, 0, 2)

Fecundity 1 6

Germination 2 1

Recruitment 4 (0, 2, 0) 15 (4, 2, 1)

Resprouting 6 (1, 0, 0) 6 (3, 0, 0)

Damage 1 18

Flammability 0 3

Composition 3 27

Structure 2 39

Drought 3 13

Fire 5 31

Cyclone 5 50

Temperature 0 1

Total studies 14 96

TABLE 4. Number of studies that have examined impacts of drought, extreme

temperatures, fire, and tropical cyclones on growth and mortality of tropical

forest trees in secondary forests by life history stage. We show in parentheses

the direction of response to climate-mediated effect relative to undisturbed

controls (+, �, 0). The symbol + indicates that the response variable was

higher in ‘treatment’ (effect of climate extreme or disturbance) forest relative

to control, � indicates a decrease in the response, and 0 indicates no change

was detected. The numbers in the parentheses only include studies which

compared the response to either an undisturbed or pre-disturbance control.

Adults

(>10 cm dbh)

Saplings

(<10 cm dbh) Seedlings All sizes

Growth 14 (0, 7, 0) 10 (1, 4, 1) 7 (0, 0, 2) 0

Mortality 32 (21, 0, 1) 14 (7, 0, 1) 11 (1, 0, 0) 8 (6, 0, 0)
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successional pathways by affecting the distribution of propagules
and seedling recruitment. However, higher flower production
may not necessarily result in higher seed production if rates of
ovule abortion or pollination visitation are affected by high tem-
peratures. Clearly, the most salient conclusion from the limited
data base we were able to compile on how temperature variability
affects tropical tree species in second growth forests is that much
remains to be learned. More studies are needed to determine the
consequences of species’ variation in physiological responses to
temperature for tree demography and forest dynamics. Since the
potential for latitudinal shifts toward cooler climates is limited in
tropical regions, studies should focus in regions where the
absence of mountains precludes elevational range shifts (Colwell
et al. 2008).

Drought.—Annual rainfall totals and rainfall seasonality in tropi-
cal forests can be quite variable (Fig. 3). Some of this variability
may be attributed to cyclical or multi-annual processes, such as
the Atlantic Multi-decadal Oscillation or El Ni~no/La Ni~na while
short-term drought spells are also a common phenomenon. In
contrast with our limited understanding of the potential effects of
changing temperatures on tropical forest dynamics, phenology,
and successional processes, the role of water availability has
received more attention (Table 2). Drought affects many aspects
of second growth dynamics, including growth and mortality of
trees, seed quality, and/or fecundity, and these responses may
occur during drought or following a time lag (Maza-Villalobos
et al. 2013).

Forest inventory and dynamics plot studies and the dendroe-
cological literature offer insights into demographic responses to
short-term or multi-annual variability. It is well known that radial
growth in tropical trees is positively correlated with precipitation
(e.g., Brienen & Zuidema 2005, Rozendaal & Zuidema 2010,12 Zui-
dema et al. 2012, Paredes-Villanueva et al. 2013) and that reduced
precipitation during ENSO events can lead to reduced tree
growth (Brienen et al. 201013 , Paredes-Villanueva et al. 2013).
ENSO events in second growth tropical forests increased stem
mortality and recruitment (Slik 2004, Chazdon et al. 2005, Ou�e-
draogo et al. 2013). In wet forests, mortality can be dependent on
tree size but is highly site specific, as both trees in small size
classes (Chazdon et al. 2005) and large trees (>20 cm DBH) (Slik
2004) experience increased mortality in drought years (Bennett
et al. 2015)14 . Drought also increases seedling mortality (Engel-
brecht et al. 2006). Moderate ENSO events have been found to
favor seed production for masting (Curran et al. 1999) and non-
masting trees (Wright & Calderon 2006). Extreme precipitation
events that affect all recruits equally might result in pulsed or
synchronized recruitment, such that there are ‘good years’, punc-
tuated by ‘bad years’ with little to no recruitment (Castilleja 200115 ,
Zimmer & Baker 2009, Vlam et al. 2014, Maza-Villalobos et al.
2013). These findings reveal that predicted increases in the fre-
quency of severe ENSO events (Federov & Philander 2000, Yeh
et al. 2009) have the potential to lead to large-scale reductions in
tree growth, recruitment, and seed production, along with
increases in stem mortality.

Guild-specific responses to drought, such as differential
growth, survivorship, or recruitment may also alter successional
dynamics. Studies in second growth forests found drought led to
greater recruitment (Slik 2004) and higher mortality for pioneer
trees (Ou�edraogo et al. 2013, Uriarte et al. in press) 16. Short-term
droughts can also influence the seed and seedling life history
stages, which may be particularly vulnerable, and consequently,
community composition (Engelbrecht & Kursar 2003, Engel-
brecht et al. 2006, 2007). Engelbrecht et al. (2006), for example,
found that short dry spells in the wet season increased mortality
of pioneer seedlings in Panama. This effect may be more impor-
tant in seasonally dry forests where pioneer species are more vul-
nerable to xylem cavitation than late successional species
(Markesteijn et al. 2011). Recent studies of functional traits sug-
gested that early successional species were more water limited
than late-successional trees in tropical dry second growth forests
(Lohbeck et al. 2015, Uriarte et al. 2016a, b) 17.

Differential vulnerability to drought between regenerative
guilds, however, might not always result in clear outcomes for
succession. For example, in a pot experiment from a dry forest
in Mexico where drought was imposed on 1 year-old seedlings,
tree species exhibited a continuum of mechanisms to tolerate or
avoid drought (Pineda-Garcia et al. 2013). This resulted in no
clear differences in physiological performance among early and
late successional species. Similarly, a 13-year record of tree mor-
tality from forest inventory plots in Trinidad showed no differ-
ences in response to drought between pioneer and old growth
forest tree species (Oatham & Ramnarine 2006). By contrast,
Sch€onbeck et al. (2015) found that later successional species were
actually more sensitive to drought, and speculated that early suc-
cessional species may have belowground adaptations to cope with
water deficits.

Comparing the direct and lagged effects of rainfall variability
on forest dynamic processes in stands ranging from very young
second growth forests to old growth forests should be a priority
for future studies. Experimental approaches such as large-scale
irrigation or drought manipulations may reveal causal links
between climate variability and successional processes that obser-
vational approaches cannot, because of the co-variation between
climatic variables such as rainfall, temperature, and solar radiation
(Pau et al. 2013). Large-scale throughfall exclusion studies in an
old growth forest in Brazil revealed tree responses to reduced soil
moisture (Nepstad et al. 2007, Brando et al. 2008, Da Costa et al.
2010), demonstrating the feasibility of this approach for under-
standing drought in second growth forests. Identification of the
physiological mechanisms that underlie differential vulnerability to
drought will be the key in predicting the effects of increased
drought on tropical forest succession.

Impacts of Altered Fire Regimes.—Most studies of impacts of fire on
second growth tropical forests have focused on post-fire mortal-
ity and forest structure, perhaps because mortality and its effects
on structure are easily measured immediately after fire. Post-fire
sapling and tree mortality can reach 75–100 percent in some
tropical forests (Woods 1989, Flores et al. 2014), 18but tree species
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and size classes differ in their vulnerability. Mortality is highest in
smaller size classes (Van Nieuwstadt et al. 2001, Van Nieuwstadt
& Sheil 2005, Brando et al. 2012), though larger trees can experi-
ence delayed mortality (Barlow et al. 2003). Fire tolerance varies
with functional and life history traits. Early successional species
and deciduous species suffer greater mortality (Santiago-Garcia
et al. 2008, Balch et al. 2011). Mortality is negatively correlated
with bark thickness and wood density (Uhl & Kauffman 1990,
Slik et al. 2010, Brando et al. 2012)19 . Since community mean wood
density generally increases with forest age (Bazzaz & Pickett
1980, Plourde et al. 2015,20 but see Craven et al. 2015), we may
expect fire-induced mortality to decrease over succession. Though
an important trait for fire tolerance, relatively few studies have
examined how bark thickness varies with successional status or
life history strategy. These studies have found mixed results: in
some ecosystems, bark thickness is linked to fire regime (Pausas
2014), though studies in tropical forests have shown no pattern
in relation to fire and instead find that bark thickness is linked to
adult stature, defense, and stem water content (Paine et al. 2010,
Ibanez et al. 2013, Poorter et al. 2013, Rosell et al. 2013)21 .
Flammability may also vary with forest age: mature stands with
tall canopies and high leaf area index maintain more humid
microclimates than younger stands (Ray et al. 2005, 2010). How-
ever, few studies have linked forest age and structure or forest
type to flammability (Table 2).

Following fire, plants can regenerate via two main strategies:
reseeding and resprouting. High intensity fire that causes adult
mortality favors reseeding (Pausas & Keeley 2014). Resprouting
is more common after low intensity fire and when post-fire con-
ditions are favorable because sprouts can quickly fill in gaps and
limit seedling recruitment (Kauffman 1991, Vesk & Westoby
2004, Pausas & Keeley 2014)22 . In an experiment in a Bolivian dry
forest that had previously been selectively harvested, sprouts
dominated post-fire regeneration over seedlings, but this trend
reversed after a high-intensity fire (Kennard et al. 2002). Observa-
tional studies in burned old growth forests and experimental
studies have shown sapling and seedling growth are either
increased by fire or not significantly altered (Fredericksen et al.
2000, Cleary & Priadjati 2005).

Differences in post-fire mortality, growth, and regeneration
success across species lead to declines in species richness and
compositional changes in burned forests (Cleary & Priadjati 2005,
Slik et al. 2008, Balch et al. 2013), and return to pre-fire condi-
tions is slow (Cleary & Priadjati 2005). For example, in Amazo-
nian floodplain forests, burned forests still resembled first-year
post-fire sites 13 years after fire (Flores et al. 2014). Still, the
combined effects of selective pressure on vegetation composition
and direct mortality can lead to prolonged changes in community
assembly, altering ecosystem development (Barlow et al. 200823 ,
Gerwing 2002, Van Nieuwstadt & Sheil 2005).

Changing fire regimes could ultimately limit tropical forest
regrowth. In Australia, fire is an important factor in determining
tropical rain forest boundaries (Ash 1988, Bowman 2000). Glob-
ally, fire limits the occurrence of forest and maintains savanna
vegetation in areas with intermediate rainfall (Staver et al. 2011).

Shifts in fire frequency could reduce favorable conditions for for-
est, which may be particularly important for young second
growth forests as they are more exposed to anthropogenic fire.
Whether this occurs will depend on the resilience of the forest
biota to fire, and how climate change ultimately ends up changing
fire regimes. Identification of thresholds for forest regeneration
and resilience will require coordinated studies across gradients of
fire occurrence and climate conditions. Effective FLR in fire-
prone landscapes may include fire suppression, planting of fire-
resistant species, or inclusion of fire breaks. Through forest man-
agement will not prevent fire impacts altogether, doing so can at
least minimize vulnerability to fire for FLR in fire-prone land-
scapes.

Impacts of Tropical Cyclone Activity.—The most widely studied
impacts are tree mortality and stand structural changes (Table 2;
Tanner et al. 1991, Walker et al. 1992, Boucher et al. 1994, Imbert
et al. 1996, Uriarte et al. 2004a,b, 24Pascarella et al. 2004, Franklin
2007, 25Ostertag et al. 2005, Van Bloem et al. 2005, 2006). Gener-
ally, tall forests with denser canopies are more susceptible to wind
damage (III Everham & Brokaw 1996), suggesting increased vul-
nerability of older second growth forest stands (Flynn et al. 2010
but see Franklin et al. 2004). On the other hand, a dense, well-
developed canopy may reduce tree mortality from tip-ups in
waterlogged soil (Arriaga 2000, Lugo 2008). Rapid forest struc-
ture and biomass recovery have led researchers to conclude that
storm effects on tropical forests are short-lived (Boucher et al.
1994, Scatena et al. 1996, Beard et al. 2005). A focus on commu-
nity dynamics offers a more nuanced picture of the potential
effects of tropical storms on the composition and successional
dynamics of second growth tropical forests (e.g., Crow 1980,
Lugo 2008, Uriarte et al. 2009).

Tree species differ in their susceptibility to wind disturbance,
the nature of the damage they sustain, and their ability to recover,
at the individual plant and population levels. Fast growing tree
species with low wood density and high specific leaf area are par-
ticularly vulnerable to trunk damage and defoliation (Zimmerman
et al. 1994, Vandermeer et al. 1997, Ross et al. 2001, Franklin
et al. 2004, Ostertag et al. 2005, Curran et al. 2008, Pohlman et al.
2008, Canham et al. 2010). The high resource conditions that typ-
ically follow storms result in large but short-lived increases in
seedling establishment and tree growth and decreases in under-
story tree mortality, particularly for light-demanding species (Guz-
man-Grajales & Walker 1991, Burslem et al. 2000, Uriarte et al.
2004a,b, 2009, Comita et al. 2009, 2010). Second growth forest
specialists often produce new sprouts and branches in response
to wind damage and higher resource availability (Bellingham et al.
1994, Zimmerman et al. 1994, Uriarte et al. 2012b). This strategy
is expected to affect long-term growth and survival. Sprouting
responses to hurricanes are particularly important in slow-grow-
ing dry forests where water, rather than light, limits tree growth
and seedling recruitment is low (Castilleja 1991, Van Bloem et al.
2006). Fecundity of reproductive trees may also be affected by
individual tree damage and subsequent changes in resources
(Wunderle 1999, Uriarte et al. 2012b). Depending on the
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availability of seeds from different successional stages, both
within the stand and in the surrounding landscapes, wind damage
may retard or accelerate succession (Flynn et al. 2009)26 . Fast grow-
ing pioneer species that can reach reproductive size quickly under
the increased light conditions that follow a storm may benefit the
most (Uriarte et al. 2009, 2012b) but the implications for succes-
sional dynamics is unclear.

Expected increases in the intensity of tropical storms should
have a significant effect on the demography, successional dynam-
ics, and community composition of second growth tropical for-
ests (Lugo 2000)27 . Greater storm severity may cause an increase
in tree mortality rates and high sapling recruitment, particularly
for pioneer and second growth forest species, retarding succes-
sion. It may also lead to an increase in the extent of second
growth forests naturally regenerating after storm passage. In the
absence of posthurricane salvage operations, a portion of the car-
bon in timber downed during a hurricane may return to the
atmosphere through accelerated decomposition, or through
heightened susceptibility to fire, potentially increasing greenhouse
gas emissions (Miranda 1996, Foster et al. 1997). The potential
for synergistic effects of wind damage and fires remains unex-
plored in tropical landscapes and is critical for understanding the
effects of climate variability and change on FLR.

HOW DO REGIONAL AND LANDSCAPE CONTEXTS MEDIATE SECOND

GROWTH FOREST RESPONSES TO CLIMATE VARIABILITY AND ALTERED

DISTURBANCE REGIMES?.—Predictions of the response of second
growth and restored tropical forests to changes in climate and cli-
mate-driven disturbances are challenged by the diversity of bio-
geographic histories and environmental conditions at continental,
regional, and landscape scales that will undoubtedly influence suc-
cessional trajectories and their sensitivity to external factors
(Fig. 1). Climate impacts will vary geographically, but so do his-
torical climate and exposure to variability. The causes and conse-
quences of environmental change in future topical forests will
manifest in different ways across geographic regions and regional
differences in ecological histories will affect the resilience of tropi-
cal forests (Malhi et al. 2014). This heterogeneity must be consid-
ered when planning FLR activities.

At the global scale, tropical second growth forests are
shaped by different biogeographic histories (Chazdon 2014).
Within biogeographic regions, natural selection and other evolu-
tionary forces, as well as human movement, affect the species
pool available for reforestation. Depending on historical exposure
to climate stressors and associated selective pressure, these spe-
cies can have different life history traits that shape their
responses to climate and disturbance. At regional to landscape
scales, physical factors such as geologic substrates and topogra-
phy create heterogeneous environments (Townsend et al. 2008),
which can influence resource availability for forest regrowth and
species distributions (Fortunel et al. 2014)28 , and exposure to cli-
mate extremes.

Human factors, such as land use practices and exploitation
of forest resources, can affect the rate of reforestation as well as
species establishment in second growth forests (Crk et al. 2009,

Atkinson & Mar�ın-Spiotta 2015) 29. Given that most second growth
forests are fragments in human-modified landscape mosaics, fac-
tors such as fragment size, connectivity, edge-to-area ratios, and
surrounding land use can affect species dispersal and recruitment
(Galanes & Thomlinson 2008, Ramjohn et al. 2012) and exposure
to disturbance (Laurance & Curran 2008). Disturbance history
and previous land-use type, intensity, and duration can also leave
long-lasting legacies on soil resources and species composition
that can influence the future trajectory of second growth forests.
Hence, not only are tropical forests diverse, second growth for-
ests are embedded in landscapes made more heterogeneous by
past and current human activities.

Our review uncovered strong biome-specific and regional
biases in research of climate impacts on successional forests.
Among the 112 studies, only 17 were conducted in dry forests
(Table 3). The majority of studies was located in the Neotropics
(Fig. 4), and Africa had the fewest studies. Research focus varies
according to regional climatic stressors: studies on hurricanes
dominated in the Caribbean and Central America, droughts in
Central Africa, and drought-induced fire in South America and
Southeast Asia. Below we discuss context-specific factors that
may modify the responses of second growth forests to climate
variability and changing disturbance regimes. These factors may
not only modify the responses of second growth forest to climate
variability and change but also determine the potential for natural
regeneration in the landscape (e.g., when forest remnants in the
landscape are scarce or when agricultural land uses dominate the
landscape, Chazdon & Guariguata 2016) 30.

Impacts of Life Zone, Biogeography, and Historic Climate
Regime.—Different biogeographic and climatic histories can lead
to regional differences in how species respond to climate. At
coarse continental scales, floras from different regions vary in
traits. For example, mast flowering is more common in Asian
Dipterocarp forests than in the Neotropics. In regions where
mast flowering appears to be triggered by ENSO-linked droughts
(Sakai et al. 2006), the consequences of climate change for regen-
eration may be very different. High densities of large mammalian
herbivores in Afrotropical forests can suppress small tree growth
and favor large trees that accumulate more carbon (Slik et al.
2013), which in turn can be more vulnerable to climate extremes
(e.g., drought in old growth stands, Phillips et al. 2010).

At coarse spatial and temporal scales, climate history may
affect responses of contemporary forests to climate variability.
For example, rain forest trees in more aseasonal climates (e,g.,
Southeast Asia) may be more vulnerable to drought through
reduced stomatal control of leaf water potential (Kumagai et al.
2008) than those of regions with more seasonality. At the same
time, severe droughts in 2005 and 2010 caused significant reduc-
tions in forest growth and elevated tree mortality in Amazonia
that persisted through time (Phillips et al. 2010) but extreme
water deficits over this same period in West and Central Africa
showed little effect on canopy processes (Asefi-Najafabady &
Saatchi 2013). These different responses may be due to long-term
precipitation reductions in West and Central Africa that shifted
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forest community composition toward more drought-tolerant spe-
cies (Fauset et al. 2012). Variation in responses may also reflect
species adaptations to the historical seasonality in precipitation
with species growing with more seasonal environments (e.g.,
Africa and Amazonas) exhibiting weaker responses to drought
than those in aseasonal climates (Southeast Asia). Because of dif-
ferent baseline precipitation regimes, climate variability may also
have different effects on successional processes in tropical dry
forests compared to wet forests (Ewel 1977, Marod et al. 2002).
Dry forests exhibit more rapid responses to short-term precipita-
tion than rain forests, which may make these ecosystems particu-
larly vulnerable to sustained declines in precipitation over longer
time scales (Vicente-Serrano et al. 2013).

Exposure and vulnerability to disturbance also vary across
biogeographic regions (Fig. 2). Fire has been an important evolu-
tionary force shaping species and ecosystems (Bond & Keeley
2005), and variation in traits like resprouting and bark thickness
have been linked to fire regimes (Pausas 2014, Pausas & Keeley
2014). However, the distribution of traits associated with adapta-
tions or vulnerability to fire across biogeographic regions is not
known for many tropical forests. Wet second growth forests may
be more significantly altered by fire relative to dry forests since
species are not pre-adapted to withstand fire (Gerwing 2002, Bar-
low et al. 2003, Van Nieuwstadt & Sheil 2005). Very high mortal-
ity has been documented in some wet tropical forest sites—for
example 75–100 percent in the Rio Negro floodplain (Flores et al.
2014)—compared to as low as 12 percent in Nicaraguan dry for-
ests (Otterstrom et al. 2006). However, resilience to fire varies
across rain forest biomes. For example, rain forests in Australia
are remarkably resilient to a single low-intensity fire: though less
resilient than savanna species, many rain forest species survive
and resprout vigorously after fire, and for some species, fire actu-
ally enhances germination (Stocker 1981, Williams 2000, Fensham
et al. 2003). Mortality, however, greatly increases with repeated
fires (Fensham et al. 2003).

Across the tropics, the frequency of cyclonic storms ranges
from annual in the northwest Pacific (e.g., Taiwan) (Lin et al.
2010) to decadal in many parts of the Caribbean (Pielke et al.
2003, Boose et al. 2004) and multi-decadal in Queensland, Aus-
tralia (Turton 2008). Life histories of tree species reflect
responses to the frequency and intensity of selective pressures
from tropical storm regimes (Webb 1958, Zimmerman et al.
1994, Curran et al. 2008, Lin et al. 2010, Uriarte et al. 2012b).
Generally, forests subjected to frequent, annual tropical storms
are low statured and more resilient and resistant to wind damage
than forests that experience storm damage on decadal scales.
This variation may make Caribbean, South Pacific and Australian
forests, for example, more susceptible to storm intensity
increases.

Despite evidence that the effects of climate variability on
tropical second growth forests vary across biogeographic regions,
there is strong geographic bias in where studies are conducted,
though biases do reflect regional stressors (Fig. 4). The vast
majority of studies on tropical storm impacts have been con-
ducted in the Caribbean (see review in Tanner et al. 1991, Fig. 4),
with some work in Australia (Turton 2008, SI 1) and far fewer
studies in Asia and the Pacific (Burslem et al. 2000, Franklin et al.
2004, Lin et al. 2010), despite the high frequency of cyclones
there. Though fire is a global phenomenon, most studies of fire
effects on tropical secondary forests are from South America,
with several from Southeast Asia. We identified few studies from
Africa related to effects of climate variability on second growth
forest. There is also a strong bias toward wet forests (Table 3)
although there is strong evidence that vegetation in many dryland
ecosystems is very sensitive to inter-annual and intra-annual
changes in rainfall (Gibbes et al. 2014) and interactions with land
use (Serneels et al. 2007). These biases make prediction of climate
impacts on tropical second growth forests difficult given the
strong regional variation in these processes, and reducing these
biases should be a priority for future research.

FIGURE 4. Geographic distribution of studies of climate effects on demography of tropical forest trees, including incidence of droughts, fires, and cyclonic

storms, conducted in secondary forest stands.
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Impacts of Local Topography, Geologic Substrate, and Soil Properties.—
Precipitation, insolation, drainage, and substrate conditions all
vary with topography (elevation, slope, aspect). These abiotic gra-
dients can underlie variation in forest species composition, struc-
ture, and function, and can lead to differences in exposure to
climate extremes and disturbance. Landscape position and other
geomorphic factors that influence soil moisture and nutrient
availability may differentially affect species’ responses to climate
variability, with cascading effects on community composition. For
example, a forest restoration study in a dry forest in northwest
Peru found a threshold response of vegetation cover to topo-
graphic wetness index, and increased success of tree recruitment
when planting was timed with ENSO events (Sitters et al. 2012).
In an eroded pasture in Mexico, soil depth was found to mediate
the differential response of early and late-successional species to
drought, with reduced mortality of the smallest seedlings on
deeper soils (Mart�ınez-Garza et al. 2013).

A large body of literature exists on topographic controls on
fire activity in higher latitudes (e.g., Taylor & Skinner 1998, Cary
et al. 2006, Flatley et al. 2011) yet far less is known for tropical
forests in general and for second growth forests in particular.
However, fire activity is linked to annual precipitation and
drought across tropical forests (Van Der Werf et al. 2008), and
moisture gradients associated with topography likely underlie
landscape-scale heterogeneity in fire activity and fire effects. For
example, in old growth gallery forests of Belize, wetter sites along
rivers and swamps were less likely to burn (Kellman & Meave
1997). In a rain forest in Kalimantan, multiple fires greatly
reduced the density of late-successional species, but this effect
was weaker in swamps, river valleys and lower slopes relative to
drier upland areas (Slik et al. 2003)31 , likely due to differences in
fire intensity. Second growth forests tend to occur non-randomly
with regards to topography and soils; regrowth happens most fre-
quently on lands marginal for agriculture (Asner et al. 2009, Aide
et al. 2013). Where these sites are drier than average, exposure to
fire could be particularly high, leading to severe fire effects.

Modeling and observational studies suggest that old growth
and second growth forests growing at high elevation or on wind-
ward slopes are more exposed to wind damage, and may experi-
ence greater mortality from storm events (III Everham &
Brokaw 1996, Arriaga 2000, Bellingham & Tanner 2000, Boose
et al. 2004). The relationship between tree damage and topogra-
phy is not always clear, however, possibly because species them-
selves are distributed in a non-random fashion with respect to
topography (e.g., Basnet 1992)32 . For example, in Puerto Rico,
exposed hillslopes at high elevation are dominated by palm for-
ests, which recover quickly from hurricanes and may be main-
tained by frequent disturbance (Zimmerman & Covich 2007).
Due to effects of terrain on wind dynamics, the relationship
between topographic location and wind exposure become less
clear at finer spatial resolutions.

The observed associations between topography and tree
damage may also be mediated by soil characteristics. Trees grow-
ing in shallow soils on ridges or hilltops, on steeper slopes, or on
soils with poor drainage have more restricted root growth, and as

a result may be more vulnerable to wind-throw and stem break
(III Everham & Brokaw 1996, Arriaga 2000, Bellingham & Tan-
ner 2000). Some species may be particularly adapted to survive
these conditions. Basnet (1992) found that Dacryodes excelsa, a spe-
cies growing in shallow soils along ridges in Puerto Rican wet
forest, was very resistant to damage, presumably because root
grafts among individuals provided structural stability. This species
is less abundant or absent from the canopy of early successional
forests after land use (Mar�ın-Spiotta et al. 2007), which could
increase their vulnerability to wind damage with increasing storm
intensity. Soil nutrients may also mediate species’ ability to
recover after a storm, particularly in dry forests where light is not
the limiting factor (Lin et al. 2003, Van Bloem et al. 2006). Soil
pH has also been positively associated with posthurricane tree
growth in a wet forest in Jamaica (Bellingham & Tanner 2000).
Local topography and soil resource availability may have an
important effect not only on tropical second growth forest ability
to withstand storm damage but also on rates of recovery and
succession. To the degree that wind exposure is greater on slopes
and at high elevation, increased storm intensity may make sec-
ondary forests particularly vulnerable to damage and slow their
recovery, as nearly 70 percent of second growth forest regrowth
occurs in hilly, upland, and mountainous terrain (Asner et al.
2009).

Impacts of Land Use, Fragmentation, and Other Human Activities.—Sec-
ond growth forests, by definition, exist in areas subject to human
influences. Legacies of human activities, along with current land-
use and land-management activities, affect forest regeneration
processes in these landscapes (Jakovac et al. 2015, Mart�ınez-
Ramos et al. 2016). Specifically, second growth forests are often
highly exposed to edge effects, impacts of fragmentation, and
anthropogenic disturbances, because regrowth tends to happen
along existing forest margins (Asner et al. 2009, Sloan et al.
2015), and in small fragments surrounded by non-forest land use
(Helmer 2000). Forest fragmentation affects microclimates and
suitability of microsites for regeneration; these effects are
dynamic and may be exacerbated by drought (Asbjornsen et al.
2004). A number of studies have demonstrated that high light
availability and temperature near edges of fragments reduce tree
growth and recruitment, suggesting that warming and drying
might exacerbate these effects and reduce persistence of drought-
susceptible tree species in fragmented landscapes (Laurance et al.
2006).

Fire regimes are closely linked with human activities and
landscape context. Land use and the presence of roads, by
increasing forests’ exposure to anthropogenic fires, can mediate
climate variability impacts on fire activity, and subsequent effects
on second growth forests. In the Amazon, fires are concentrated
along forest edges (Alencar et al. 2004) and near roads (Nepstad
et al. 2001, Cochrane & Barber 2009), and fire occurrence
increases with fragmentation (Soares-Filho et al. 2012, Armen-
teras et al. 2013). In Southeast Asia, fires are associated with
deforestation and human activity (Aiken 2004, Field et al. 2009),
but there have been few studies examining the effects of
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fragmentation on fire occurrence. The type of land cover in the
matrix surrounding fragmented forests will also affect the degree
to which forests are exposed to fire, because fires are often asso-
ciated with particular land cover types, such as pasture and fallow
(Gutierrez-Velez et al. 2014). The concentration of second growth
forests in areas with high levels of human impact and the strong
links between fire and human activity increase the risk of expo-
sure to fire. Further research is needed to determine the extent
to which second growth forests in tropical landscapes are subject
to burning and how fire affects tropical forest development
(Barlow & Peres 2008).

Invasive species, another important consequence of human
activities, can also influence exposure to fire in tropical forests.
Grass invasions can initiate a grass-fire cycle, in which flammable,
non-native grass species provide a continuous fine fuel layer con-
ducive to fire (D’Antonio & Vitousek 1992). The invasive Lan-
tana camara initiates a similar cycle in Australian and Indian
forests, where it proliferates under high light conditions and cre-
ates a continuous fuel layer in the understory of rain forests (Fen-
sham & Fairfax 1994,33 Hiremath & Sundaram 2005, Berry et al.
2011, Catterall 2016). Invasive species could thus exacerbate
impacts of climate change on fire regimes in tropical second
growth forests, especially because invasive species are often more
abundant in second growth forests.

Landscape heterogeneity in the patterns and legacies of
human land use can influence how second growth tropical forest
communities respond to tropical storms (Zimmerman et al. 199534 ,
Ostertag et al. 2005, Uriarte et al. 2009). Land use increases the
regional abundance of second growth forest species, which are
often less resistant to storm disturbance than old growth forest
species (Thompson et al. 2002). By opening up the canopy, storm
disturbance may be important in maintaining second growth spe-
cies in tropical forest stands with a history of human use, thereby
providing a positive feedback between human and natural distur-
bance (Boucher et al. 200135 , Flynn et al. 2010, Comita et al. 2010).
On the other hand, storm damage may foster establishment of
primary forest species already present in the understory, accelerat-
ing succession (Lomascolo & Aide 2001). Finally, human-induced
landscape fragmentation may influence storm damage. Frag-
mented forests and trees near edges may be more vulnerable to
wind disturbance (Laurence & Curran 2008)36 , although high spa-
tial heterogeneity in wind damage appears to obscure detection of
this effect (Catterall et al. 2008, Grimbacher et al. 2008). Since
second growth forests tend to dominate fragmented landscapes,
synergies between disturbance and fragmentation may play a key
role in the dynamics and persistence of second growth and
restored tropical forests.

CONCLUSIONS

The number of studies of climate impacts on second growth and
restored tropical forests is increasing, yet our understanding
remains rudimentary and regionally biased. Climate models pre-
sage increasing warming and drying, more intense cyclonic
storms, and altered fire regimes. Our review highlights the

following research gaps in our understanding of second growth
tropical forests to future climates with implications for FLR.
� The glaring absence of studies on the effects of increasing tem-

perature on second growth forest trees highlights the urgency of
developing a coordinated approach to resolve this critical
research question. Such approach should combine experimental
manipulations, in situ physiological measurements, and models
that can be benchmarked against longitudinal tree demographic
data spanning a range of temperature and precipitation regimes.

� Experimental and observational data illustrate that physiologi-
cal and growth responses of species to warming, drying, and
disturbance vary by successional status, but the implications of
this variation for successional dynamics and forest restoration
trajectories are not clear.

� Since greenhouse warming is expected to result in simultane-
ous changes in multiple aspects of climate, a focus on identifi-
cation of key tradeoffs in species responses to different
climate stressors is key for the development of well-parameter-
ized models of forest dynamics.

� Most studies to date have been conducted in Neotropical wet
forests, hindering generalization across the diverse tropics.
Given the context dependencies of tropical second growth for-
est responses to climate, our results highlight the need for
comparative studies across biogeographic regions and biomes
that could lead to generalization and prediction.

� A number of studies suggest that regional variation in species
vulnerability to climate stressors reflects exposure to those
stressors in the past. However, whether the ability of species
to respond to new stressors may exhibit thresholds or biome-
specific responses requires further research.

� Globally, the combined effects of human land use and novel cli-
mate and disturbance regimes are likely to alter successional tra-
jectories and increase the extent of second growth forests.
Identification of thresholds for forest regeneration and resilience
will require coordinated, sustained and interdisciplinary research
efforts across gradients of disturbance and climate conditions.

� Knowledge on how climate variability and change will influ-
ence FLR outcomes should be incorporated into FLR policies
(e.g., prioritizing spatial targets for restoration) and programs
(e.g., active vs. passive restoration). A number of studies have
identified tree species and afforestation practices that can ame-
liorate effects of climate on plantations and regrowth forests
(e.g., adaptation, Stanturf et al. 2014). For instance, managers
may choose to plant tree species that have been historically
absent from a site but can withstand predicted future climate
conditions (e.g., species with high resistance to drought stress
or fire). Incorporating considerations of the likely effects of
climate variability and change on FLR outcomes will lower
costs and improve the persistence of FLR outcomes.
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